Targeted Amino Acid Substitutions Impair Streptolysin O Toxicity and Group A Streptococcus Virulence
نویسندگان
چکیده
UNLABELLED Streptolysin O is a potent pore-forming toxin produced by group A Streptococcus. The aims of the present study were to dissect the relative contributions of different structural domains of the protein to hemolytic activity, to obtain a detoxified form of streptolysin O amenable to human vaccine formulation, and to investigate the role of streptolysin O-specific antibodies in protection against group A Streptococcus infection. On the basis of in silico structural predictions, we introduced two amino acid substitutions, one in the proline-rich domain 1 and the other in the conserved undecapeptide loop in domain 4. The resulting streptolysin O derivative showed no toxicity, was highly impaired in binding to eukaryotic cells, and was unable to form organized oligomeric structures on the cell surface. However, it was fully capable of conferring consistent protection in a murine model of group A Streptococcus infection. When we engineered a streptococcal strain to express the double-mutated streptolysin O, a drastic reduction in virulence as well as a diminished capacity to kill immune cells recruited at the infection site was observed. Furthermore, when mice immunized with the toxoid were challenged with the wild-type and mutant strains, protection only against the wild-type strain, not against the strain expressing the double-mutated streptolysin O, was obtained. We conclude that protection occurs by antibody-mediated neutralization of active toxin. IMPORTANCE We present a novel example of structural design of a vaccine antigen optimized for human vaccine use. Having previously demonstrated that immunization of mice with streptolysin O elicits a protective immune response against infection with group A Streptococcus strains of different serotypes, we developed in this study a double-mutated nontoxic derivative that represents a novel tool for the development of protective vaccine formulations against this important human pathogen. Furthermore, the innovative construction of an isogenic strain expressing a functionally inactive toxin and its use in infection and opsonophagocytosis experiments allowed us to investigate the mechanism by which streptolysin O mediates protection against group A Streptococcus. Finally, the ability of this toxin to directly attack and kill host immune cells during infection was studied in an air pouch model, which allowed parallel quantification of cellular recruitment, vitality, and cytokine release at the infection site.
منابع مشابه
Mutational analysis of the group A streptococcal operon encoding streptolysin S and its virulence role in invasive infection.
The pathogen group A Streptococcus (GAS) produces a wide spectrum of infections including necrotizing fasciitis (NF). Streptolysin S (SLS) produces the hallmark beta-haemolytic phenotype produced by GAS. The nine-gene GAS locus (sagA-sagI) resembling a bacteriocin biosynthetic operon is necessary and sufficient for SLS production. Using precise, in-frame allelic exchange mutagenesis and single-...
متن کاملSuicide cancer gene therapy using pore-forming toxin, streptolysin O.
We cloned the streptolysin O gene from the Streptococcus pyogenes genome and tested the possibility of using it as an anticancer reagent. Transient transfection of the streptolysin O gene efficiently killed 293T cells after 12 hours of transfection as determined by lactate dehydrogenase release and propidium iodide uptake. No caspase activity was observed and necrosis was prominent during strep...
متن کاملCytotoxic effects of streptolysin o and streptolysin s enhance the virulence of poorly encapsulated group a streptococci.
Although the toxicity of streptolysin O (SLO) and streptolysin S (SLS) in purified group A streptococci (GAS) has been established, the effect of these molecules in natural infection is not well understood. To identify whether biologically relevant concentrations of SLO and SLS were cytotoxic to epithelial and phagocytic cells that the bacteria would typically encounter during human infection a...
متن کاملStreptococcal histone-like protein: primary structure of hlpA and protein binding to lipoteichoic acid and epithelial cells.
In addition to its role in the nucleoid, the histone-like protein (HlpA) of Streptococcus pyogenes is believed to act as a fortuitous virulence factor in delayed sequelae by binding to heparan sulfate-proteoglycans in the extracellular matrix of target organs and acting as a nidus for in situ immune complex formation. To further characterize this protein, the hlpA genes were cloned from S. pyog...
متن کاملVitamin D and the Human Antimicrobial Peptide LL-37 Enhance Group A Streptococcus Resistance to Killing by Human Cells
The CsrRS two-component regulatory system of group A Streptococcus (GAS; Streptococcus pyogenes) responds to subinhibitory concentrations of the human antimicrobial peptide LL-37. LL-37 signaling through CsrRS results in upregulation of genes that direct synthesis of virulence factors, including the hyaluronic acid capsule and streptolysin O (SLO). Here, we demonstrate that a consequence of thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 4 شماره
صفحات -
تاریخ انتشار 2013